

1) Solve:
$$(2x + 5)^2 = -32$$

Use S.R.M.

 $2x + 5 = \pm \sqrt{-32}$
 $2x = -5 \pm \sqrt{16}\sqrt{2}\sqrt{-1}$
 $2x = -5 \pm \sqrt{16}\sqrt{2}\sqrt{-1}$

2) Make a perfect - Square: $x^2 - 12x + (-6)^2 = (x - 6)$
 $\frac{1}{2} \cdot (-12) = -6$
 $x^2 - 12x + 36 = (x - 6)^2$

$$\chi^{2} + 20\chi + 104 = 0$$

$$\chi^{2} + 20\chi + 10^{2} = -104 + 10^{2}$$

$$\frac{1}{2} \cdot 20 = 10$$

$$\chi^{2} + 20\chi + 10^{2} = -104 + 10^{2}$$

$$\chi + 10 = \pm \sqrt{-4}$$

$$\chi = -10 \pm 2i$$

4) Solve by using the quadratic Sormula: $2-10\pm2i$

$$2x^{2} + 5x - 7 = 0$$

$$0 = 2 \quad b = 5 \quad C = -7 \quad x = \frac{-b \pm \sqrt{b^{2} + 40}c}{20} = \frac{-5 \pm \sqrt{81}}{2(2)}$$

$$b^{2} - 40c = 5^{2} - 4(2)(-7) \qquad = \frac{-5 \pm 9}{4} \quad x = \frac{-4}{4} = \frac{4}{4} = 1$$

$$= 25 + 56$$

$$= 81$$

$$x = \frac{-5 + 9}{4} = \frac{-14}{4} = \frac{7}{4}$$

5) Solve
$$2x^2 + 5x - 7 = 0$$
 by Completing the square method. Hint: Make Lead. Coes. 1.

 \Rightarrow Divide by \Rightarrow
 $\frac{2}{3}x^2 + \frac{5}{2}x - \frac{7}{2} = 0$
 $x^2 + \frac{5}{2}x + \frac{25}{16} = \frac{7}{2} + \frac{25}{16}$

6) Solve $(3x - 2)(2x + 3) = 5$ by Using the quadratic formula. Hint: Foil, Simplify, write in Somma $6x^2 + 9x - 4x - 6 - 5 = 0$
 $6x^2 + 5x - 11 = 0$
 $6x -$

Area os a rectangle is 22 m^2 .

The length is 5m longer than 3 times its width.

Find its dimensions.

A=LW 2(3x+5)=22 $3x^2+5x-22=0$ $2x=\frac{-b\pm\sqrt{b^2+ac}}{2a}$ $2x=\frac{-5\pm\sqrt{259}}{2(3)}$ $2x=\frac{-5\pm\sqrt{259}}{6}$ $2x=\frac{-5\pm\sqrt{259}}{6}$ $2x=\frac{-5\pm\sqrt{259}}{6}$ $2x=\frac{-5\pm\sqrt{259}}{6}$ $2x=\frac{-5\pm\sqrt{259}}{6}$ $2x=\frac{-5\pm\sqrt{259}}{6}$ $2x=\frac{-5\pm\sqrt{259}}{6}$ $2x=\frac{-5\pm\sqrt{259}}{6}$

Discuss the type of Solutions:

$$3x^2 - 2x + 10 = 0$$

 $a=3$ $b=-2$ $C=10$
 $b^2-4ac = (-2)^2-4(3)(10)$
 $= 4-120 = -116 < 0$
Two imaginary Solutions

Discuss the type of Solutions:

$$9x^2 - 12x = -4$$
 $9x^2 - 12x + 4 = 0$
 $0 = 9$
 $0 = -12$
 $0 = 4$

Hint: $0 = 0$
 $0 = 9$
 $0 = -12$
 $0 = 0$

Hint: $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$

Hint: $0 = 0$
 $0 = 0$
 $0 = 0$
 $0 = 0$

Hint: $0 = 0$
 $0 = 0$
 $0 = 0$

Hint: $0 = 0$
 $0 = 0$
 $0 = 0$

Hint: $0 = 0$
 $0 = 0$
 $0 = 0$

Hint: $0 = 0$
 $0 = 0$
 $0 = 0$

Hint: $0 = 0$

Find a quadratic equation in $0x^2 + bx + C = 0$ form with Solutions -3 and 5. x = -3 x = 5 x + 3 = 0 x - 5 = 0

$$(x+3)(x-5)=0$$

 $x^2-5x+3x-15=0$
 $x^2-2x-15=0$

Sind a quadratic equation in
$$0x^2+bx+c=0$$

Sorm with Solutions $-3\pm2\sqrt{5}$.

 $x=-3+2\sqrt{5}$
 $x+3-2\sqrt{5}=0$
 $x+3+2\sqrt{5}=0$
 $x+3+2\sqrt{5}=0$

Sind a quadratic equation in
$$0x^2+bx+c=0$$

Sorm with Solutions $\frac{2}{3} \pm \frac{5}{3}i$.

 $x = \frac{2}{3} + \frac{5}{3}i$

Use LCD=3 to clear Structions

 $3x = 2+5i$
 $3x = 2-5i$
 $3x - 2 - 5i = 0$
 $3x - 2 + 5i = 0$

Conjugates

$$(3x - 2)^2 - (5i)^2 = 0$$

$$9x^2 - 12x + 4 - 25(-1) = 0$$
 $4x^2 - 12x + 4 - 25(-1) = 0$

**

Final Ans.

Solving equadratic equains in Sorm:

$$\chi^{4} - 5\chi^{2} - 36 = 0$$
Notice
$$\chi^{4} = (\chi^{2})^{2}$$
Let
$$u = \chi^{2}$$
 Equation becomes
$$u = 9 \qquad u = 4$$

$$\chi^{2} = 9 \qquad \chi^{2} = -4$$

$$\chi^{2} = 9 \qquad \chi^{2} = -4$$

$$\chi^{2} = 9 \qquad \chi^{2} = -4$$

$$\chi^{2} = 4 \qquad \chi^{2} = 4$$

Solve
$$\chi^4 - 12\chi^2 + 32 = 0$$

Hint: $\chi^4 = (\chi^2)^2$
 $(\chi^2)^2 - 12\chi^2 + 32 = 0$
Let $u = \chi^2 \Rightarrow u^2 - 12u + 32 = 0$
 $u = \chi^2 \Rightarrow u = 12u + 32 = 0$
 $u = \chi^2 \Rightarrow u = 12u + 32 = 0$
 $u = \chi^2 \Rightarrow u = 12u + 32 = 0$
 $u = \chi^2 \Rightarrow u = 12u + 32 = 0$
 $u = \chi^2 \Rightarrow u = \chi^2 \Rightarrow u = 12u + 32 = 0$
 $u = \chi^2 \Rightarrow u = \chi^2 \Rightarrow u = \chi^2 \Rightarrow u = \chi^2 \Rightarrow u = \chi^2 \Rightarrow \chi$

Solve
$$(\sqrt{2} - 1)^2 - 3(\sqrt{2} - 1) + 2 = 0$$

by making Proper Subs.
Let $u = \sqrt{2} - 1$
Equation becomes $u^2 - 3u + 2 = 0$
Equation becomes $(u - 2)(u - 1) = 0$
 $u = 1$ $u = 2$ $u = 2$ $u = 1$
 $\sqrt{2} - 3u + 2 = 0$
 $u = 1$ $u = 2$ $u = 2$ $u = 1$
 $\sqrt{2} - 3u + 2 = 0$
 $u = 1$ $u = 2$ $u = 2$ $u = 1$
 $\sqrt{2} - 3u + 2 = 0$
 $u = 2$ $u = 1$
 $\sqrt{2} - 3u + 2 = 0$
 $u = 2$ $u = 1$
 $\sqrt{2} - 3u + 2 = 0$
 $\sqrt{2}$

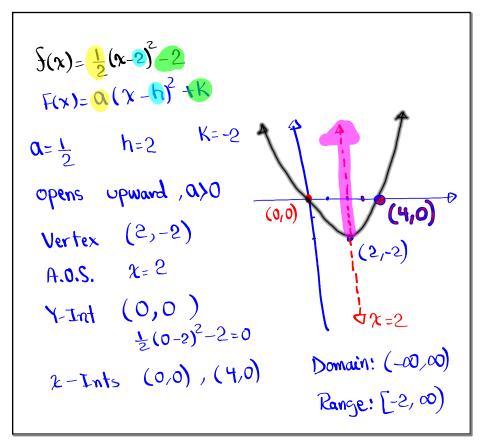
Solve
$$\chi^{3/5} - \chi^{1/5} - 2 = 0$$

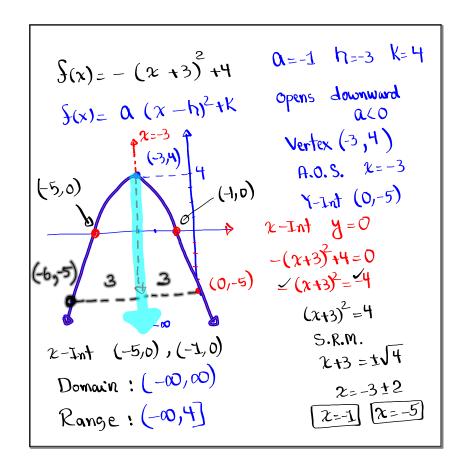
Hint: $\chi^{3/5} = \left[\chi^{1/5}\right]^2$

Rewrite the equation $\left[\chi^{1/5}\right]^2 - \left[\chi^{1/5}\right] - 2 = 0$

Let $u = \chi^{1/5} = 0$
 $u = 2$
 $\chi^{1/5} = 2$
 $\chi^{1/5} = 2$
 $\chi^{1/5} = 2$
 $\chi^{1/5} = 1$
 $\chi^{1/5} = 1$

Solve
$$\chi^{\frac{1}{2}} + 2\chi^{\frac{1}{4}} - 3 = 0$$
 Subs.


Hint: $\chi^{\frac{1}{2}} = (\chi^{\frac{1}{4}})^2$ $2 \cdot \frac{1}{4} = \frac{1}{2}$


Now equation can be written as Sollow

$$\left[\chi^{\frac{1}{4}}\right]^2 + 2\left[\chi^{\frac{1}{4}}\right] - 3 = 0$$

Let $\chi^{\frac{1}{4}} = 3$ $\chi^{$

Solve
$$(9x + 10)^2 - 7(9x + 10) + 12 = 0$$

Let $1 = 9x + 10 = 0$ $12 - 7x + 12 = 0$
 $1 = 3$ $1 = 4$ $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$ $1 = 4$
 $1 = 3$

$$S(x) = 2^{2} + 22 + 3$$

$$S(x) = 0x^{2} + bx + C$$

$$0 = 1 \quad b = 2 \quad C = 3$$
Opens upwards, 0,0
$$Vertex \quad (h, K) = (-1, 2) \quad (-1, 2)$$

$$h = -\frac{b}{20} = -\frac{2}{2(1)} = -\frac{2}{2} = -1$$

$$K = S(h) = S(-1) = (-1)^{2} + 2(-1) + 3 = 2 \quad x = 1$$

$$A.0.S. \quad 2 = h \quad 2 = -1 \quad x - Int : None$$

$$Domain \Rightarrow (-0, \infty)$$

$$Range \Rightarrow [2, \infty)$$

$$S(x) = -2^{2} + 4x$$

$$S(x) = 0 x^{2} + 6x + 0$$

$$Vertex (h, K) = (2, 4)$$

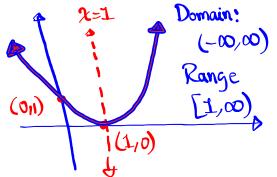
$$h = \frac{b}{20} = \frac{4}{2(4)} = \frac{4}{-2} = 2$$

$$K = S(h) = -(2)^{2} + 4(2)$$

$$= -4 + 8 = 4$$

$$2 - Ints! (0,0), (4,0)$$

$$Domain! (-00, 00)$$


$$Range! (-0, 4)$$

$$f(x) = x^2 - 2x + 1$$
 $a=1$ $b=-2$ $c=1$

$$S(x) = ax^2 + bx + C$$
 Opens upward, aso

$$h = \frac{-b}{20} = \frac{-(-2)}{2(1)} = 1$$
 $k = f(1)$

A.O.S.
$$x=1$$

Y-Int (0, 1)

Class QZ 19

1) Solve
$$(x-2)^2 = -9$$

2) Solve $4x^2 + 9 = 12x$ by the quadratic formula.